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Abstract

Recovering the latent photorealistic faces from their
artistic portraits aids human perception and facial analy-
sis. However, a recovery process that can preserve iden-
tity is challenging because the fine details of real faces can
be distorted or lost in stylized images. In this paper, we
present a new Identity-preserving Face Recovery from Por-
traits (IFRP) to recover latent photorealistic faces from un-
aligned stylized portraits. Our IFRP method consists of
two components: Style Removal Network (SRN) and Dis-
criminative Network (DN). The SRN is designed to transfer
feature maps of stylized images to the feature maps of the
corresponding photorealistic faces. By embedding spatial
transformer networks into the SRN, our method can com-
pensate for misalignments of stylized faces automatically
and output aligned realistic face images. The role of the DN
is to enforce recovered faces to be similar to authentic faces.
To ensure the identity preservation, we promote the recov-
ered and ground-truth faces to share similar visual features
via a distance measure which compares features of recov-
ered and ground-truth faces extracted from a pre-trained
VGG network. We evaluate our method on a large-scale
synthesized dataset of real and stylized face pairs and at-
tain state of the art results. In addition, our method can
recover photorealistic faces from previously unseen stylized
portraits, original paintings and human-drawn sketches.

1. Introduction
A variety of style transfer methods have been proposed

to generate portraits in different artistic styles from photo-
realistic images. However, the recovery of photorealistic
faces from artistic portraits has not been fully investigated
yet. In general, stylized face images contain various fa-
cial expressions, facial component distortions and misalign-
ments. Therefore, landmark detectors often fail to localize
facial landmarks accurately as shown in Figures 1(c) and
1(g). Thus, restoring identity-consistent photorealistic face
images from unaligned stylized ones is challenging.

While recovering photorealistic images from portraits is

(a) Original

(b) Seen (c) Landmarks (d) [16] (e) Ours

(f) Unseen (g) Landmarks (h) [16] (i) Ours

Figure 1. Comparisons to the state-of-art method. (a) Ground-
truth face image (from test dataset; not available in the training
dataset). (b, f) Unaligned stylized portraits of (a) from Candy
style (seen/used style in training) and Udnie style (unseen style
in training), respectively. (c, g) Detected landmarks by [53]. (d, h)
Results obtained by [16]. (e, i) Our results.

still uncommon in the literature, image stylization meth-
ods have been widely studied. Recently, Gatys et al. [8]
achieve promising results by transferring different styles of
artworks to images via the semantic contents space. Since
this method generates the stylized images by iteratively up-
dating the feature maps of CNNs, it requires costly compu-
tations. In order to reduce the computational complexity,
several feed-forward CNN based methods have been pro-
posed [39, 40, 16, 5, 25, 3, 50, 13]. However, these methods
can use only a single style fixed during the training phase.
Such methods are insufficient for generating photorealistic
face images, as shown in Figures 1(d) and 1(h), because
they only capture the correlations of feature maps by the use
of Gram matrices and discard spatial relations [21, 20, 19].

In order to capture spatially localized statistics of a style
image, several patch-based methods [24, 14] have been
developed. However, such methods cannot capture the
global structure of faces either, thus failing to generate au-
thentic face images. For instance, patch-based methods
[24, 14] fail to attain consistency of face colors, as shown in
Figure 6(e). Furthermore, the state-of-the-art style trans-
fer methods [8, 24, 39, 16] transfer the desired styles to
the given images without considering the task of identity
preservation. Hence, previous methods cannot generate real
faces while preserving identity.



In this paper, we develop a novel end-to-end trainable
identity-preserving approach to face recovery that automat-
ically maps the unaligned stylized portraits to aligned pho-
torealistic face images. Our network employs two subnet-
works: a generative subnetwork, dubbed Style Removal
Network (SRN), and a Discriminative Network (DN). The
SRN consists of an autoencoder (a downsampling encoder
and an upsampling decoder) and Spatial Transfer Networks
(STN) [15]. Th encoder extracts facial components from
unaligned stylized face images and transfer the extracted
feature maps to the domain of photorealistic images. Sub-
sequently, our decoder forms face images. STN layers are
used by the encoder and decoder to align stylized faces. The
discriminative network, inspired by [9, 4, 46, 47], forces
SRN to generate destylized faces to be similar to authentic
ground-truth faces.

Moreover, as we aim to preserve the facial identity in-
formation, we constrain the recovered faces to have the
same CNN feature representations as the ground-truth real
faces. For this purpose, we employ pixel-level Euclidean
and identity-preserving loss functions to guarantee the
appearance- and identity-wise similarity to the ground-truth
data. We also use an adversarial loss to achieve high-quality
visual results.

To train our network, we require pairs of Stylized Face
(SF) and ground-truth Real Face (RF) images. Therefore,
we synthesize a large-scale dataset of SF/RF pairs. We ob-
serve that our CNN filters learned on images of seen styles
(used for training) can extract meaningful features from im-
ages in unseen styles. Thus, the facial information of un-
seen stylized portraits can be extracted and used to generate
photorealistic faces, as shown in the experimental section.

The main contributions of our work are fourfold:

(i) We propose an IFRP approach that can recover photo-
realistic faces from unaligned stylized portraits. Our
method generates facial identities and expressions that
match the ground-truth face images well.

(ii) We use STNs as intermediate layers to compensate for
misalignments of input portraits. Thus, our method
does not require the use of facial landmarks or 3D face
models (typically used for face alignment).

(iii) We fuse an identity-preserving loss, a pixel-wise simi-
larity loss and an adversarial loss to remove seen/unseen
styles from portraits and recover the underlying identity.

(iv) As large-scale datasets of stylized and photorealistic
face pairs are not available, we synthesize a large
dataset of pairs of stylized and photorealistic faces,
which will be available on-line.

To the best of our knowledge, our method is the first at-
tempt to provide a unified approach to the automated style
removal of unaligned stylized portraits.

2. Related Work
In this section, we briefly review neural generative mod-

els and deep style transfer methods for image generation.

2.1. Neural Generative Models

There exist many generative models for the problem of
image generation [28, 18, 28, 9, 4, 51, 36]. Among them,
GANs are conceptually closely related to our problem as
they employ an adversarial loss that forces the generated
images to be as photorealistic as the ground-truth images.

Several methods adopt an adversarial training to learn
a parametric translating function from a large-scale dataset
of input-output pairs, such as super-resolution [22, 47, 12,
48, 46] and inpainting [30]. These approaches often use
the `2 or `1 norm and adversarial losses to compare the
generated image to the corresponding ground truth image.
Although these methods produce impressive photorealistic
images, they fail to preserve identities of subjects.

Conditional GANs have been used for the task of gen-
erating photographs from sketches [33], and from semantic
layout and scene attributes [17]. Li and Wand [24] train
a Markovian GAN for the style transfer – a discriminative
training is applied on Markovian neural patches to capture
local style statistics. Isola et al. [14] develop “pix2pix”
framework which uses so-called “Unet” architecture and the
patch-GAN to transfer low-level features from the input to
the output domain. For faces, this approach produces visual
artefacts and fails to capture the global structure of faces.

Patch-based methods fail to capture the global structure
of faces and, as a result, they generate poor destylization
results. In contrast, we propose an identity-preserving loss
to faithfully recover the most prominent details of faces.

Moreover, there exist several methods to synthesize
sketches from photographs (and vice versa) [27, 49, 38, 35].
While sketch-to-face synthesis is a related problem, our uni-
fied framework can work with various more complex styles.

2.2. Deep Style Transfer

Style transfer is a technique which can render a given
content image (input) by incorporating a specific painting
style while preserving the contents of input. We distinguish
image optimization-based and feed-forward style transfer
methods. The seminal optimization-based work [7] trans-
fers the style of an artistic image to a given photograph.
It uses an iterative optimization to generate a target image
which is randomly initialized (Gaussian distribution). Dur-
ing the optimization step, the statistics of the neural activa-
tions of the target, the content and style images are matched.

The idea [7] inspired many follow-up studies. Yin [45]
presents a content-aware style transfer method which ini-
tializes the optimization algorithm with a content image in-
stead of a random noise. Li and Wand [23] propose a patch-
based style transfer method by combining Markov Random
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Field (MRF) and CNN techniques. The work [6] proposes
to transfer the style by using linear models. It preserves
colors of content images by matching color histograms.

Gatys et al. [8] decompose styles into perceptual factors
and then manipulate them for the style transfer. Selim et al.
[34] modify the content loss through a gain map for the head
portrait painting transfer. Wilmot et al. [44] use histogram-
based losses in their objective and build on the Gatys et
al.’s algorithm [7]. Although the above optimization-based
methods further improve the quality of style transfer, they
are computationally expensive due to the iterative optimiza-
tion procedure, thus limiting their practical use.

To address the poor computational speed, feed-forward
methods replace the original on-line iterative optimization
step with training a feed-forward neural network off-line
and generating stylized images on-line [39, 16, 24].

Johnson et al. [16] train a generative network for a fast
style transfer using perceptual loss functions. The architec-
ture of their generator network follows the work [32] and
also uses residual blocks. Another concurrent work [39],
named Texture Network, employs a multi-resolution archi-
tecture in the generator network. Ulyanov et al. [40, 41] re-
place the spatial batch normalization with the instance nor-
malization to achieve a faster convergence. Wang et al. [42]
enhance the granularity of the feed-forward style transfer
with multimodal CNN which performs stylization hierar-
chically via multiple losses deployed across multiple scales.

These feed-forward methods perform stylization ∼1000
times faster than the optimization-based methods. However,
they cannot adapt to arbitrary styles that are not used for
training. For synthesizing an image from a new style, the
entire network needs retraining. To deal with such a restric-
tion, a number of recent approaches encode multiple styles
within a single feed-forward network [5, 3, 2, 25].

Dumoulin et al. [5] use conditional instance normal-
ization that learns normalization parameters for each style.
Given feature activations of the content and style images,
[3] replaces content features with the closest-matching style
features patch-by-patch. Chen et al. [2] present a network
that learns a set of new filters for every new style. Li et
al. [25] also adapt a single feed-forward network via a tex-
ture controller module which forces the network towards
synthesizing the desired style only. We note that the exist-
ing feed-forward approaches have to compromise between
the generalization [25, 13, 50] and quality [41, 40, 10].

3. Proposed Method
We aim to infer a photorealistic and identity-preserving

face Îr from an unaligned stylized face Is. For this pur-
pose, we design our IFRP framework which contains a
Style Removal Network (SRN) and a Discriminative Net-
work (DN). We encourage our SRN to recover faces that
come from the latent space of real faces. The DN is trained

to distinguish recovered faces from real ones. The general
architecture of our IFRP framework is depicted in Figure 2.

3.1. Style Removal Network

Since the goal of face recovery is to generate a photo-
realistic destylized image, a generative network should be
able to remove various styles of portraits without losing the
identity-preserving information. To this end, we propose
our SRN which comprises an autoencoder (a downsampling
encoder and an upsampling decoder) and the STN layers.
Figure 2 shows the architecture of our SRN (enclosed by
the blue frame).

The autoencoder learns a deterministic mapping from a
portrait space into a latent space with the use of encoder,
and a mapping from the latent space to the real face space
with the use of decoder. In this manner, the encoder extracts
the high-level features of the unaligned stylized faces and
projects them into the feature maps of the real face domain
while the decoder synthesizes photorealistic faces from the
extracted information.

Considering that the input stylized faces are often mis-
aligned, tilted or rotated etc., we incorporate four STN lay-
ers [15] to perform face alignments in a data-driven fashion.
The STN layer can estimate the motion parameters of face
images and warp them to a canonical view. The architecture
of our STN layers can be found in the supplementary mate-
rial. Figure 3 illustrates that a successful alignment can be
performed by combining STN layers with out network.

3.2. Discriminative Network

Using only a pixel-wise distance between the recovered
faces and their ground-truth real counterparts leads to over-
smoothed results, as shown in Figure 3(c). To obtain ap-
pealing visual results, we introduce a discriminator, which
forces recovered faces to reside in the same latent space as
real faces. Our proposed DN is composed of convolutional
layers and fully connected layers, as illustrated in Figure 2
(the green frame). The discriminative loss, also known as
the adversarial loss, penalizes the discrepancy between the
distributions of recovered and real faces. This loss is also
used to update the parameters of the SRN unit (we alternate
over updates of the parameters of SRN and DN). Figure 3(d)
shows the impact of the adversarial loss on the final results.

3.3. Identity Preservation

By using the adversarial loss, our SRN is able to generate
high-frequency facial contents. However, the results often
lack details of identities such as the beard or wrinkles, as
illustrated in Figure 3(d). A possible way to address this
issue is to constrain the recovered faces to share as many
features as possible with the ground-truth faces.

We construct an identity-preserving loss motivated by
the ideas of Gatys et al. [7] and Johnson et al. [16]. Specif-
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Figure 2. The Architecture of our identity-preserving face destylization framework consists of two parts: a style removal network (blue
frame) and a discriminative network (green frame).

(a) (b) (c) (d) (e)

Figure 3. Contribution of each component of our IFRP network.
(a) Input unaligned portraits from unseen styles. (b) Ground-truth
face images. (c) Recovered faces with the `2 loss. (d) Recovered
faces without the identity-preserving loss. (e) Our final results.

ically, we define an Euclidean distance between the feature
representations of the recovered and the ground truth im-
age, respectively. The feature maps are obtained from the
ReLU activations of the VGG-19 network [37]. Since the
VGG network is pre-trained on a very large image dataset,
it can capture visually meaningful facial features. Hence,
we can preserve the identity information by encouraging the
feature similarity between the generated and ground-truth
faces. We combine the pixel-wise loss, the adversarial loss
and the identity-preserving loss together as our final loss
function to train our network. Figure 3(e) illustrates that,
with the help of the identity-preserving loss, our IFRP net-
work can reconstruct satisfying identity-preserving results.

3.4. Training Details

To train our IFRP network in an end-to-end fashion,
we require a large number of SF/RF training image pairs.
For each RF, we synthesize different unaligned SF images
from various artistic styles to obtain SF/RF (Is, Ir) train-
ing pairs. As described in Section 4, we only use stylized
faces from three distinct styles in the training stage.

Our goal is to train a feed-forward network SRN to
produce an aligned photorealistic face from any given un-
aligned portrait. To achieve this, we force the recovered face

Îr to be similar to its ground-truth counterpart Ir. Denote
GΘ(Is) as the output of our SRN. Since the STN layers are
interwoven with the layers of our autoencoder, we optimize
the parameters of the autoencoder and the STN layers si-
multaneously. The pixel-wise loss function LMSE between
Îr and Ir is expressed as:

LMSE(Θ)=E(Is,Ir)∼p(Is,Ir)‖GΘ(Is)− Ir‖2F ,

where p(Is, Ir) represents the joint distribution of the SF
and RF images in the training dataset, and Θ denotes the
parameters of the SRN unit.

To obtain convincing identity-preserving results, we pro-
pose an identity-preserving loss to be the Euclidean distance
between the features of recovered face Îr = GΘ(Is) and
ground-truth face Ir. The identity-preserving loss Lid is
written as follows:

Lid(Θ) = E(Is,Ir)∼p(Is,Ir)‖ψ(GΘ(Is))−ψ(Ir)‖2F ,

where ψ(.) denotes the extracted feature maps from the
layer ReLU3-2 of the VGG-19 model with respect to some
input image.

Motivated by the idea of [9, 4, 32], we aim to make
the discriminative networkDΦ fail to distinguish recovered
faces from real ones. Therefore, the parameters of the dis-
criminator Φ are updated by minimizing Ldis, expressed
as:

Ldis(Φ)=−EIr∼p(Ir)[logDΦ(Ir)]

−EÎr∼p(Îr)
[log(1−DΦ(Îr))],

where p(Ir) and p(Îr) indicate the distributions of real and
recovered faces respectively, andDΦ(Ir) andDΦ(Îr) are
the outputs of DΦ. The Ldis loss is also back-propagated
w.r.t. the parameters Θ of the SRN unit.
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Our SNR loss is a weighted sum of three terms: the
pixel-wise loss, the adversarial loss, and the identity-
preserving loss. The parameters Θ are obtained by mini-
mizing the objective function of the SRN loss as follows:

LSNR(Θ) =E(Is,Ir)∼p(Is,Ir)‖GΘ(Is)− Ir‖2F
+λ EIs∼p(Is))[logDΦ(GΘ(Is))]

+η E(Is,Ir)∼p(Is,Ir)‖ψ(GΘ(Is))−ψ(Ir)‖2F ,

where λ and η are trade-off parameters for the discriminator
and the identity-preserving losses respectively, and p(Is) is
the distribution of stylized faces.

Since both GΘ(·) and DΦ(·) are differentiable func-
tions, the error can be back-propagated w.r.t. Θ and Φ
by the use of the Stochastic Gradient Descent (SGD) com-
bined with Root Mean Square Propagation (RMSprop) [11],
which helps our algorithm to converge faster.

3.5. Implementation Details

The batch normalization procedure is applied after our
convolutional and deconvolutional layers except for the last
deconvolutional layer, similar to the models described in [9,
32]. We also use leaky rectifier with piece-wise linear units
(leakyReLU [26]) and the negative slope equal 0.2 as the
non-linear activation function. Our network is trained with a
mini-batch size of 64. In all our experiments, the parameters
λ and η are set to 10−2 and 10−3. We also set the learning
rate to 10−3 and the decay rate to 10−2.

As the iterations progress, the images of output faces will
be more similar to the ground-truth. Hence, we gradually
reduce the effect of the discriminative network by decreas-
ing λ. Thus, λn = max{λ · 0.995n, λ/2}, where n is the
epoch index. The strategy of decreasing λ not only enriches
the effect of the pixel-level similarity but also keeps the dis-
criminative information in the SRN during training. We also
decrease η to reduce the impact of the identity-preserving
constraint after each iteration: ηn = max{η · 0.995n, η/2}.

As our method is feed-forward and no optimization is re-
quired at the test time, it takes 10 ms to destylize a 128×128
image. We plan to release the dataset and the code.

4. Synthesized Dataset and Preprocessing
To train our IFRP network and avoid overfitting, a large

number of SF/RF image pairs are required. To generate a
dataset of such pairs, we employ the CelebA [55] dataset.
We first randomly choose 10K aligned real faces from the
CelebA dataset for training and 1K images for testing. We
use these images as our RF ground-truth faces Ir which are
aligned by eyes. The original size of the images is 178×218
pixels. We crop the central part of each image and resize
it to 128×128 pixels. Second, we apply affine transforma-
tions to the aligned real faces to generate in-plane unaligned
faces. To synthesize our training dataset, we retrain the “fast

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)
Figure 4. Samples of the synthesized dataset. (a) The ground-
truth aligned real face image. (b)-(d) The synthesized portraits
form Candy, Feathers and Scream which have been used for train-
ing our network. (e)-(i) The synthesized portraits form Starry, Mo-
saic, la Muse, Udnie and Composition VII styles which have not
been used for training.

style transfer” network [16] for three different artworks
Scream, Candy and Feathers separately. Note that recov-
ering photorealistic faces from Candy, Feathers and Scream
styles is more challenging compared to other styles, because
facial details are distorted and over-smoothed during the
stylization process, as shown in Figure 4. Finally, we obtain
30K SF/RF training pairs. We also use 1K unaligned real
faces to generate 8K SF images from eight diverse styles
(Starry Night, la Muse, Composition VII, Scream, Candy,
Feathers, Mosaic and Udnie) as our testing dataset. There
is no overlap between the training and testing datasets.

5. Experiments
Below, we compare our approach qualitatively and quan-

titatively to the state-of-the-art methods. To the best of our
knowledge, there are no methods which are designed to re-
cover photorealistic faces from portraits. To conduct a fair
comparison, we retrain the approaches [7, 16, 24, 14, 54] on
our training dataset for the task of destylization.

5.1. Qualitative Evaluation

We visually compare our approach against five methods
detailed below. To let them achieve their best performance,
we align SF images in the test dataset (via STN network).

Gatys et al. [7] is an image-optimization based style
transfer method which does not have any training stage.
This method captures the correlation between feature maps
of the portrait and the synthesized face (Gram matrices) in
different layers of a CNN. Therefore, spatial structures of
face images cannot be preserved. As shown in Figures 5(c)
and 6(c), the network fails to produce realistic results and
the artistic styles have not been fully removed.

We retrain the approach proposed by Johnson et al. [16]
for destylization. Due to the use of the Gram matrix, their
network also generates distorted facial details and produces
unnatural effects. As shown in Figures 5(d) and 6(d), the fa-
cial details are blurred and the skin colors are not homoge-
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(a) RF

(b) SF (c) [7] (d) [16] (e) [24] (f) [14] (g) [54] (h) Ours

Figure 5. Comparisons of the state-of-the-art methods. (a) The ground-truth real face. (b) Input portraits (from the test dataset) including
the seen styles Feathers and Candy as well as the unseen styles Mosaic, Starry and Udnie. (c) Gatys et al.’s method [7]. (d) Johnson et al.’s
method [16]. (e) Li and Wand’s method [24] (MGAN). (f) Isola et al.’s method [14] (pix2pix). (g) Zhu et al.’s method [54] (CycleGAN).
(h) Our method.

neous. As shown in the first row of Figure 6(d), we observe
that the styles of the eyes were not removed from outputs.

MGAN [24] is a patch-based style transfer method. We
retrain this network for the purpose of the face recovery. As
this method is trained on RF/SF patches, it cannot capture
the global structure of entire faces. As seen in Figures 5(e)
and 6(e), this method produces distorted results and the fa-
cial colors are inconsistent. In contrast, our method suc-
cessfully captures the global structure of faces and gener-
ates highly-consistent facial colors.

Isola et al. [14] train a ”U-net” generator augmented
with a PatchGAN discriminator in an adversarial frame-
work, known as ”pix2pix”. Since the patch-based discrim-
inator is trained to classify whether an image patch is sam-
pled from real faces or not, this network does not take the
global structure of faces into account. In addition, the U-
net concatenates low-level features from the bottom layers
of the encoder with the features in the decoder to generate
face images. Because the low-level features of input images
are passed to the outputs, this network fails to eliminate the
artistic styles in the face images. As shown in Figures 5(f)
and 6(f), although pix2pix can generate acceptable results
for the seen styles, it fails to remove the unseen styles and
produces obvious artifacts .

CycleGAN [54] is an image-to-image translation method
that uses unpaired datasets. This network provides a map-
ping between two different domains by the use of a cycle-

consistency loss. Since CycleGAN also employs a patch-
based discriminator, this network cannot capture the global
structure of faces. As this network uses unpaired face
datasets i.e., unpaired RF and SF images, the low-level fea-
tures of the stylized faces and real faces are uncorrelated.
Thus, CycleGAN is not suitable for transferring stylized
portraits to photorealistic ones. As shown in Figures 5(g)
and 6(g), this method produces distorted results and does
not preserve the identities with respect to the input images.

In contrast, our results demonstrate higher fidelity and
better consistency with respect to the real faces, such as fa-
cial expressions and skin colors. Our network can preserve
identity information of a subject for both seen and unseen
styles, as shown in Figures 5(h) and 6(h).

5.2. Quantitative Evaluation

Pixel-wise Recovery Analysis:
To evaluate the pixel-wise recovery performance, we use

the average Peak Signal to Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM) [43] scores on seen and unseen
styles of our test dataset. The pixel-wise recovery results for
each method are summarized in Table 1 (higher scores in-
dicate better results). The PSNR and SSIM scores confirm
that our IFRP approach outperforms other state-of-the-art
methods on both seen (the first and second rows) and un-
seen (the third, fourth and fifth rows) styles. Figures 5 and
6 verify the performance visually. Moreover, we also apply
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(a) RF

(b) SF (c) [7] (d) [16] (e) [24] (f) [14] (g) [54] (h) Ours

Figure 6. (a) The ground-truth real face. (b) Input portraits (from the test dataset) including the seen styles Candy andScream as well as the
unseen styles Composition VII, Udnie and la Muse from unseen styles. (c) Gatys et al.’s method [7]. (d) Johnson et al.’s method [16]. (e)
Li and Wand’s method [24] (MGAN). (f) Isola et al.’s method [14] (pix2pix). (g) Zhu et al.’s method [54] (CycleGAN). (h) Our method.

Table 1. Comparisons of PSNR and SSIM on the entire test dataset.

Method Seen Styles Unseen Styles Unseen Sketches
PSNR SSIM PSNR SSIM PSNR SSIM

Gatys [7] 23.88 0.84 23.25 0.83 23.33 0.82
Johnson [16] 19.65 0.82 19.81 0.81 19.77 0.82
MGAN [24] 20.87 0.79 20.21 0.66 21.01 0.71
pix2pix [14] 25.28 0.89 23.10 0.85 23.88 0.86

CycleGAN [54] 19.584 0.78 18.99 0.77 19.60 0.77
SRN 25.12 0.89 24.09 0.88 24.13 0.89

SRN + DN 25.25 0.90 24.25 0.89 24.56 0.90
IFRP 27.08 0.93 24.83 0.91 24.89 0.92

different methods on sketches from the CUFSF dataset as an
unseen style without fine-tuning or re-training our network.

In order to demonstrate the contributions of each loss
function to the quantitative results, we also show the results
for when only the `2 loss is used, as indicated by SRN in
Table 1, and for both the `2 and discriminative losses, as
indicated by SRN+DN in Table 1. The `2 loss considers
the intensity similarity only, thus it produces over-smooth
faces. The discriminative loss further forces the generated
faces to be realistic, thus it improves the final results qual-
itatively and quantitatively. Benefiting from our combined
loss, our network not only achieves highest quantitative re-
sults but also generates photorealistic face images.
Face Retrieval Analysis:

In this section, we demonstrate that the faces recovered
by our method are highly consistent with their ground-truth
counterparts. To this end, we run a face recognition al-
gorithm [29] on our test dataset for both seen and unseen

styles. For each investigated method, we set 1K recovered
faces from one style as a query dataset and then set 1K
of ground-truth faces as a search dataset. We apply [29]
to quantify whether the correct person is retrieved within
the top-5 matched images. Then an average retrieval score
is obtained. We repeat this procedure for every style and
then obtain the average Face Retrieval Ratio (FRR) by av-
eraging all scores from the seen and unseen styles, respec-
tively. As indicated in Table 2, our IFRP network outper-
forms the other methods across all the styles. Even for
the unseen styles, our method can still retain most iden-
tity features, making the destylized results similar to the
ground-truth faces. Moreover, we also run an experiment
on hand-drawn sketches of the CUFSF dataset used as an
unseen style. The FRR scores are better compared to re-
sults on other styles as facial components are easier to
extract from sketches/their contours. Despite our method
is not dedicated to face retrieval, we compare it to [52].
To challenge our method, we did not re-train our network
on sketches (we used other styles). Thus, we recovered
faces from sketches (CUFSF dataset) and performed face
identification that yielded ∼91% Verification Rate (VR)
FAR=0.1%. This outperforms photo-synthesizing method
MRF+LE [52] (43.66% VR at FAR=0.1%) which uses
sketches for training.
Consistency Analysis w.r.t. Styles:

As shown in Figures 5(h) and 6(h), our network recovers
the photorealistic faces from various stylized portraits of the
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Table 2. Comparisons of FRR and FCR on the entire test dataset.

Method FRR FCR
Seen Styles Unseen Styles Unseen Sketch

Gatys [7] 64.67% 60.28% 68.36% 72.89%
Johnson [16] 50.54% 38.87% 40.27% 44.99%
MGAN [24] 6.97% 12.52% 17.99% 38.24%
pix2pix [14] 75.13% 59.98% 61.63% 87.73%

CycleGAN [54] 1.07% 0.68% 0.70% 13.32%
IFRP 86.93% 74.52% 91.05% 92.06%

Figure 7. Results for the original unaligned paintings. Top row:
the original portraits from art galleries. Bottom row: our results.

Figure 8. Recovering photo-realistic faces from hand-drawn
sketches from the FERET dataset. Top row: ground-truth faces.
Middle row: sketches. Bottom row: our results.

same person. Note that recovered faces resemble each other.
It indicates that our network is robust to different styles.

In order to demonstrate the robustness of our network to
different styles quantitatively, we study the consistency of
faces recovered from different styles. Here, we choose 1K
faces destylized from one style. For each destylized face
we search its top-5 most similar faces in another group of
destylized faces. If the same person is retrieved within the
top-5 candidates, we record it as a hit. Then an average hit
number of one style is obtained. We repeat the same proce-
dure for all the other 7 styles, and then calculate the average
hit number, denoted as Face Consistency Ratio (FCR). Note
that the probability of one hit by chance is 0.5%. Table 2
shows the average FCR scores on the test dataset for each
method. The FCR scores indicate that our IFRP method
produces the most consistent destylized faces across differ-
ent styles. This also implies that our SRN can extract facial
features irrespective of image styles.

5.3. Destylizing Original Paintings and Sketches

We demonstrate that our method is not restricted to re-
covery of faces from computer-generated stylized portraits
but it can also deal with real paintings and sketches. To

Figure 9. Limitations. Top row: ground-truth faces. Middle row:
unaligned stylized faces. Bottom row: our results.

confirm this, we randomly choose a few of paintings from
art galleries such as Archibald [1] and hand-drawn sketches
from FERET dataset [31]. Next, we crop face regions from
them as our real test images. Figures 7 and 8 show that our
method can efficiently recover photorealistic faces. This in-
dicates that our method is not limited to the synthesized data
and does not require an alignment procedure beforehand.

5.4. Limitations

We note that in the CelebA dataset, numbers of images
of children, old people and young adults are unbalanced
e.g., there are more images of young adults than children
and old people. This makes our synthesized dataset unbal-
anced. Hence, facial features of children and old people is
are not fully represented in our dataset. Therefore, our net-
work may be prone to recover images with facial features
of young adults for children and old people, as seen in Fig-
ure 9. In addition, because the color information has been
distorted in the stylized paintings, it is very challenging to
recover the skin and hair color that is consistent with the
ground-truth without introducing additional cues. In future,
we intend to embed semantic information into our network
and then generate more consistent face images in terms of
the skin and hair color.

6. Conclusion
We introduce a novel neural network for face recovery.

It extracts features from a given unaligned stylized portrait
and then recovers a photorealistic face from these features.
The SRN successfully learns a mapping from unaligned
stylized faces to aligned photorealistic faces. Moreover, our
identity-preserving loss further encourages our network to
generate identity trustworthy faces. This makes our algo-
rithm readily available for tasks such as face recognition.
We also show that our approach can recover latent faces of
portraits in unseen styles, real paintings and sketches.
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